
Poster: Assisting Static Analysis with Large
Language Models: A ChatGPT Experiment

Haonan Li
UC Riverside

hli333@ucr.edu

Yu Hao
UC Riverside

yhao016@ucr.edu

Yizhuo Zhai
UC Riverside

yzhai003@ucr.edu

Zhiyun Qian
UC Riverside

zhiyunq@cs.ucr.edu

Abstract—Recent advances of Large Language Models (LLMs),
e.g., ChatGPT, exhibited strong capabilities of comprehending
and responding to questions across a variety of domains. Sur-
prisingly, ChatGPT, a general LLM, even possesses a strong
understanding of program code. In this paper, we investigate
where and how LLMs can assist static analysis by asking
appropriate questions. In particular, we target a specific bug-
finding tool, which produces many false positives from the static
analysis. Interestingly, in our evaluation, we find that these
false positives can be effectively pruned by asking carefully
constructed questions about function-level behaviors or function
summaries. Specifically, with a case study of 16 false positives
due to imprecise function summaries, we find that ChatGPT
(GPT-3.5) can successfully prune 8 out of 16, whereas GPT-4
can successfully 16 out of 16. We find LLMs a promising tool
that can enable a more effective and efficient program analysis.

Index Terms—Static analysis, Bug finding, Large language
model, ChatGPT

I. INTRODUCTION

Static analysis plays a crucial role in uncovering vulnera-
bilities and enhancing software quality. Unfortunately, static
analysis faces an inherent tradeoff between precision and
scalability. In practice, static analysis tools often produce a
large number of false positives, hampering their adoption.

In this paper, we investigate the feasibility of taking advan-
tage of Large Language Models (LLMs), such as ChatGPT, as
flexible and general assistance to prune such false positives. In
particular, we hypothesize that ChatGPT can generate function
summaries that are more precise than what static analysis
can compute, e.g., in the presence of loops and operations
on variable-length data structures (e.g., strlen()). These
precise function summaries are the basis for pruning false
positives.

We develop an automated, interactive process for leveraging
ChatGPT to generate accurate, precise, structured function
summaries. We evaluate our approach on 16 false positive
cases due to imprecise function summaries reported from
UBITect [1] using two versions of ChatGPT (GPT-3.5 and
GPT-4). Our results show the resulting summaries from GPT-
3.5 are not always correct and precise, which leads to half of
the false positives being pruned. Surprisingly, GPT-4 attains
both precise and correct function summaries for all cases,
which can prune 100% of the false positives. A side benefit
of using ChatGPT is that function summaries are generated
within a predictable amount of time (unlike static analysis).

1 static int libcfs_ip_str2addr(...){
2 unsigned int a, b, c, d;
3 if (sscanf(str, "%u.%u.%u.%u%n",
4 &a, &b, &c, &d, &n) >= 4 && ...){
5 // use of a, b, c, d
6 }
7 }
8 int sscanf(const char *buf, const char *fmt, ...){
9 va_start(args, fmt);

10 i = vsscanf(buf, fmt, args);
11 va_end(args);
12 }

Figure 1: Code snippet of sscanf and its usecase, derived from Linux kernel

This research highlights the potential of LLMs in enhancing
the effectiveness and efficiency of static analysis.

II. BACKGROUND

UBITect targets Use Before Initialization (UBI) bugs in the
Linux kernel through a two-stage process [1]. The first stage
employs a bottom-up summary-based static analysis of the
kernel. Essentially, the analysis is a MAY analysis, where func-
tion summaries indicate potential bug occurrences, resulting
in a large number of warnings (i.e., ∼140k) In the second
stage, UBITect uses symbolic execution to filter out false
positives by verifying the path feasibility of reported bugs.
However, over 40% of the reported warnings are discarded
due to timeout or memory limitations in symbolic execution,
potentially rejecting genuine bugs.

III. MOTIVATION AND OVERVIEW

A. Motivating Example

Figure 1 shows a false positive produced by UBITect. A
bug is reported in line 4 and line 5 because it is believed that
arguments a, b, c, d are not initialized but used. However,
both are incorrect due to the following reasons:
• Inability to recognize special functions. First, the report

in line 4 is incorrect because there is in fact no “use” of
args inside sscanf(), other than the va_start() call
and va_end() call in line 9 and line 11. Unfortunately,
UBITect cannot find the definition of these two functions
and conservatively assumed that they might “use” args.
However, these functions are compiler’s built-in ones that
simply recognize variable-length arguments and no “use”
is involved. Indeed, the semantic of sscanf() is to
“define”/write new values into args as opposed to “use”.



• Unawareness of post-conditions. Second, the report in
line 5 is incorrect because the function summary generated
by UBITect is insensitive to the return value check, or
post-conditions. Specifically, UBITect does not know the
arguments a, b, c, d are always initialized if the return
value is greater than or equal to 4. Instead, it simply
conservatively estimates that all function parameters “may”
be left uninitialized, demonstrating the lack of sensitivity
and flexibility when function summaries are computed.

B. Observations

We argue that both challenges in the static analysis are
prevalent. The variable-length argument issue can be attributed
to Inherent Knowledge Boundaries (KB), where static analysis
often needs to encode domain knowledge of various kinds,
e.g., modeling certain special functions that involve assembly
code or recursive data structures. The unawareness of post-
conditions can be attributed to Tradeoff Between Precision and
Scalability (TPS). Unfortunately, computing function sum-
maries precisely with respect to different sensitivity require-
ments, especially in the presence of loops, variable-length data
structures, etc., is simply infeasible. This is why we often see
functions such as strlen() being modeled and summarized
manually.

We believe the advent of LLMs [2] offers a promising
alternative for function summarization. LLMs can efficiently
generate knowledgeable and precise function summaries by
leveraging extensive training data. They encompass a vast
knowledge base and recognize complex patterns, enabling the
production of more precise and comprehensive summaries.

IV. METHODOLOGY

Our objective is to employ LLMs to generate precise func-
tion summaries. The generated summaries should be structured
and easily integrated into existing systems.

Specifically, our approach asks ChatGPT to generate func-
tion summaries about what arguments are initialized in a
given function call, considering relevant contexts such as
concrete arguments that are passed to the function call and
return value checks. We engage in an interactive process,
allowing ChatGPT to request additional information when
needed. Finally, we prompt ChatGPT to produce a structured
summary for easy integration.

ChatGPT is known to generate unreliable answers with low
confidence. To mitigate this issue, we design an automatic
interaction mechanism to avoid forcing ChatGPT into giving
uncertain answers. Specifically, we prompt ChatGPT initially
with, “if you feel uncertain due to a lack of code defini-
tion, you should respond with what additional function/struc-
ture definitions you need”. In response, ChatGPT can reply
in the following format: ["type": "function_def",
"name": "some_func"]. We then utilize a script to au-
tomatically locate the definition of the function some_func,
provide it to ChatGPT, and prompt it to reanalyze the case.

Currently, the GPT-4 API is not available (as of April 2023),
so our script is based on GPT-3.5, with GPT-4 results being

Table I: Selected function summaries: “S?” for Soundness and “C?” for Com-
pleteness. Type indicates analysis challenges: Inherent Knowledge Boundaries
(KB), Tradeoff Between Precision and Scalability (TPS), or both.

Function Call Type GPT-3.5 GPT-4
S? C? S? C?

sscanf KB, TPS ✓ ✓ ✓ ✓
read_mii_word KB, TPS ✗ ✗ ✓ ✓
acpi_decode_pld_buffer KB, TPS ✓ ✓ ✓ ✓
of_graph_get_remote_node KB ✓ ✓ ✓ ✓
msr_read KB ✓ ✓ ✓ ✓
cpuid KB ✗ ✗ ✓ ✓
bq2415x_i2c_read KB ✓ ✓ ✓ ✓
parse_nl_config TPS ✓ ✗ ✓ ✓
snd_interval_refine TPS ✗ ✗ ✓ ✓
xfs_iext_lookup_extent TPS ✓ ✗ ✓ ✓
__skb_header_pointer TPS ✗ ✗ ✓ ✓
snd_rawmidi_new TPS ✓ ✗ ✓ ✓
snd_hwdep_new TPS ✗ ✗ ✓ ✓
xdr_stream_decode_opaque_inline TPS ✓ ✓ ✓ ✓
of_parse_phandle_with_args TPS ✓ ✓ ✓ ✓
kstrtoul TPS ✓ ✓ ✓ ✓

"func_call": "sscanf(str, \"%u.%u.%u.%u%n\",
&a, &b, &c, &d, &n) >= 4",

"must_init": ["&a", "&b", "&c", "&d"],

Figure 2: Snippet of the summary of sscanf(...)>=4.

generated manually. However, there are no inherent challenges
in supporting GPT-4 once the API becomes available.

V. EVALUATION

To evaluate our approach, we randomly select 19 false
alarms from UBITect. We determine that 16 of these cases are
due to imprecise summaries (i.e., KB or TPS), while the other
three cases stem from indirect calls or heap variables, which
are distinct from imprecise function summaries. Among the 16
cases, ChatGPT can directly (i.e., without requiring additional
information such as function definitions) summarize three of
them (sscanf, cpuid, kstrtoul).

In assessing the outcomes of function summaries, our at-
tention is centered on two primary aspects: Soundness, i.e.,
whether variables identified as “must_init” are correct; and
Completeness, i.e., whether all “must_init” variables are cor-
rectly identified. Each case is executed three times, and if any
of the runs exhibit unsound or incomplete, we mark it with a ✗.
Table I presents a comparison between the function summaries
generated by GPT-3.5 and GPT-4. As we can see, GPT-
3.5’s results show that only 68.75% are sound, and 50% are
complete. Conversely, GPT-4 exhibits significantly enhanced
performance. Our evaluation underscores the practical utility
of our approach for generating precise function summaries in
program analysis.

REFERENCES

[1] Y. Zhai, Y. Hao, H. Zhang, D. Wang, C. Song, Z. Qian, M. Lesani,
S. V. Krishnamurthy, and P. Yu, “Ubitect: A precise and scalable method
to detect use-before-initialization bugs in linux kernel,” in Proceedings
of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2020, 2020.

[2] OpenAI (2023), “GPT-4 Technical Report,” Mar. 2023, arXiv:2303.08774
[cs]. [Online]. Available: http://arxiv.org/abs/2303.08774


