
Poster: Your Access Control List Is Recoverable
Even if Your OS Is Compromised

Caleb Rother, Bo Chen
Department of Computer Science, Michigan Technological University

{crother, bchen}@mtu.edu

Abstract—In the history of access control, nearly every system
designed has relied on the operating system for enforcement of
its protocols. If the operating system (and specifically root access)
is compromised, there are few if any solutions that can get users
back into their system efficiently. In this work, we have proposed
a method by which file permissions can be efficiently rolled
back after a catastrophic failure of permission enforcement. Our
key idea is to leverage the out-of-place-update feature of flash
memory in order to collaborate with the flash translation layer
to efficiently return those permissions to a state pre-dating the
failure.

Index Terms—access control, ACL, flash translation layer,
recovery

I. INTRODUCTION

Access control lists (ACL) are commonly implemented by
operating systems to specify permissions of users/groups to
access system resources including files, directories, etc. To
ensure the ACL can work correctly for controlling access
of system resources, an implied assumption is that the OS
should not be compromised. This assumption however, does
not always hold. Major commodity operating systems use large
monolithic kernels which are prone to attacks [1]. Once the
OS is compromised, the adversary may arbitrarily change the
file permissions by modifying the ACL. After the adversary is
evicted, efficiently restoring file permissions is a crucial task
in timely returning the system to its normal state. However,
the malicious changes to the ACL could be wide-scale and
efficiently restoring the entire ACL is a non-trivial problem.

Thus, we aim to tackle this problem. To ensure efficiency,
we should not rely on remote backups and the restoration
should purely happen in the local device. Our design relies on
two insights: 1) We ensure restoration of the ACL entries by
utilizing raw data in the underlying flash memory. To change
file permissions, the adversary typically needs to overwrite
them at the OS level. However, a flash storage device performs
out-of-place updates internally and, therefore, an old version
of the ACL entries may still be preserved on the raw NAND
flash. Therefore, it is possible to roll back the ACL entries
by extracting the corresponding raw data being preserved.
2) To enable an efficient rollback of the ACL entries, we
should avoid expensive data copying. Instead, we transparently
restore them by carefully reconstructing the corresponding
mappings in the PMT table, which maintains all mappings
between the block addresses (accessible to the file system)
and the flash memory addresses. Note that data recovery from
malware attacks using flash memory has been explored in

prior works [3], [5], [6], which focus on restoring the entire
storage. However, this work specifically focuses on restoring
ACL entries which requires a fine-grained analysis over the
raw flash memory data.

II. BACKGROUND

Access control list (ACL). An ACL is a list of permissions
associated with a system object. It has been implemented in
a variety of file systems to control access of files and directo-
ries, including but not limited to NTFS (used in Windows),
ext2/ext3/ext4 (used in Linux and other Unix-like OSes),
APFS (used in macOS and iOS), etc. This work mainly focuses
on the ACL used in the ext file systems, in which the ACL
entries are split up on a directory-by-directory basis and stored
in inodes which are created when the file system is initialized
and stored in groups on the drive.
Flash memory and flash translation layer. NAND flash has
been used broadly as the external storage in both standard
computers and mobile devices today, as it consumes much
less power and is capable of much faster read/write speeds.
Flash memory is typically organized into blocks, each of
which consists of pages. Each page contains a small out-of-
bound (OOB) area. The flash memory works in a unique way,
requiring an erase before writing, as well as erasing in terms
of blocks.

To remain compatible with traditional block file systems
such as ext4, a flash storage device (e.g., an SSD) usually
exposes a block access interface. This is achieved by intro-
ducing a new flash translation layer (FTL), a piece of special
firmware which stays between the file system and the NAND
flash, transparently managing the special characteristics of
NAND flash. The FTL implements the out-of-place update
strategy [5], in which upon updating the data stored on a
flash page, it places the new data to a new page, and simply
invalidates the old page without sanitizing it immediately.
Therefore, an old version of the data is temporarily preserved
on its original page. This could enable rollbacks of this data
for nearly zero storage overhead. Our work therefore utilizes
this phenomenon to restore the ACL entries compromised by
the adversaries. The FTL also maintains a page mapping table
(PMT) keeping track of the physical location of the data on
the flash memory. In other words, given the logical address on
the block device, by searching the PMT table, we can identify
the physical flash page where the corresponding data is stored.



III. THREAT MODEL AND ASSUMPTIONS

We consider a computer using flash memory as external
storage. The adversary is able to compromise the OS of
the computer, obtaining root access. The adversary tries to
disrupt the access control by means of modifying files’ access
permissions. We make a few assumptions: 1) The structure of
the file system is either intact or has not been compromised for
the entire duration that the computer has been on, as it would
require the adversary with very high levels of knowledge about
the operating system to compromise the file system’s structure
without completely destroying the computer. 2) The target
operating system stays in the first partition of the disk, which is
common for most users. 3) The FTL is secure, as it is isolated
by the storage hardware from the OS.

IV. PRELIMINARY DESIGN

The design consists of three phases: setup, monitoring, and
restoration.
Setup. Upon initialization, the FTL will 1) identify the number
of inode groups stored on the filesystem, 2) find the logical
page number for the first inode of each inode group and store
the logical page number in an array in ascending order (further
referred to as “Array 1”), and 3) store the size of each inode
group, measured in pages. In the event of a shutdown of the
drive, the aforementioned data can either be committed to disk
and read on restart, or the setup process can be run again.
Monitoring. Following setup, any overwrite to a logical page
in the FTL will cause the following procedure to be run:

1) Check if this operation is overwriting a logical page
containing inodes. This is achieved via a binary search
of Array 1, checking whether the page being written is
within the size of an inode group from any entry.

2) If the logical page contains inodes, we will find out where
the current physical copy of the page is stored by looking
it up in the PMT. Append the resulting physical page
number to the OOB area of the new page being written.
Then, store this logical page number to an array (further
referred to as “Array 2”). Also whitelist this physical page
from being removed by garbage collection.

Restoration. When the user has identified that the ACL is
compromised and wants to roll-back the latest changes to it,
the user will send a restoration command to the FTL. Upon
receiving the restoration command, the FTL will perform the
following steps:

1) For each logical page number in Array 2, do:
a) Read the current entry by looking it up the PMT, read

the corresponding physical page, and check the OOB
area.

b) Update the PMT by changing the current page’s entry
in the PMT to point back to its old physical page
number stored in the OOB from step (a).

This reverts the data stored in the inodes to their contents
before last written, effectively undoing the undesired changes.
Fig. 1 gives a visual demonstration. Future work. There are
some remaining issues we plan to address in the future work

Fig. 1. A visual demonstration of rolling back changes to a page. Note that
we store ID 72 in page 73’s OOB area for easy retrieval.

including: 1) the timely detection of unauthorized changes
to the ACL entries, and 2) the seamless integration of the
detection and the recovery components for a full-fledged
framework.

V. PRELIMINARY IMPLEMENTATION AND EVALUATION

Our preliminary design is made on ext2 which uses a
traditional ACL. The design can be easily ported to ext3 or
4 by modifying the setup. We have implemented our design
by modifying the open-source FTL firmware OpenNFM [2]
and porting it to an electronic development board LPC-H3131
(ARM9 32-bit, 32MB RAM) for testing. The LPC-H3131
was attached to a host computer via a USB 2.0 interface.
The test was performed in Kali Linux running in a virtual
machine equipped with 2 4.9 GHz CPU cores (coming from
an Intel i9-10900KF chip) and 4 GB of RAM. To simulate the
attack on compromising the ACL entries, we used the chmod
command to set entries to new permissions values. To simulate
the recovery of the ACL entries after the attack, we issued a
command to the FTL via a write to a specific page in order
to activate the restoration [4].

Our experiment showed that a rollback of the ACL entries is
feasible. We also measured the time needed for rolling back
an AVL entry which is around 11 milliseconds on average.
We observed that the time needed for rolling back more ACL
entries (e.g., 30) does not increase a lot, as the restoration of
the ACL entries can be efficiently achieved by rolling back
the corresponding mapping entries in the PMT table, without
copying any actual data.
Acknowledgment. This work was supported by US Na-
tional Science Foundation under grant number 2225424-CNS,
1928349-CNS, and 2043022-DGE.

REFERENCES

[1] Critical RCE Vulnerability in Linux Kernel Let Hackers Compro-
mise The Entire Systems Remotely. https://cybersecuritynews.com/
linux-kernel-bug-3/.

[2] Opennfm. https://code.google.com/p/opennfm/.
[3] N. Chen and B. Chen. Defending against os-level malware in mobile

devices via real-time malware detection and storage restoration. Journal
of Cybersecurity and Privacy, 2(2):311–328, 2022.

[4] N. Chen, B. Chen, and W. Shi. A cross-layer plausibly deniable
encryption system for mobile devices. In Proc. of SecureComm ’22.

[5] L. Guan, S. Jia, B. Chen, F. Zhang, B. Luo, J. Lin, P. Liu, X. Xing, and
L. Xia. Supporting transparent snapshot for bare-metal malware analysis
on mobile devices. In Prof. of ACSAC ’17.

[6] W. Xie, N. Chen, and B. Chen. Enabling accurate data recovery for
mobile devices against malware attacks. In Proc. of SecureComm ’22.

2


