
Poster: A Self-auditing Protocol for Decentralized
Cloud Storage via Trusted Hardware Components

Josh Dafoe, Niusen Chen, Bo Chen
Department of Computer Science, Michigan Technological University, Houghton, MI, USA

{jwdafoe, niusenc, bchen}@mtu.edu

Abstract—Ensuring integrity of the data outsourced to a
decentralized cloud storage system is a critical but challenging
problem. To provide this guarantee, current decentralized cloud
storage systems rely on blockchain and smart contracts to
establish a trusted entity which can audit the storage peers. This
would result in a significant overhead as each smart contract is
run on all the miners of the blockchain. By leveraging trusted
hardware components equipped with the storage peer, this work
has designed a unique self-auditing protocol which can ensure
data integrity in the decentralized cloud without relying on the
blockchain and smart contracts.

Index Terms—decentralized cloud, trusted execution environ-
ment, flash translation layer, integrity auditing, self auditing

I. INTRODUCTION

Cloud storage systems have been used extensively to store
data outsourced by corporate entities and individuals. To build
cloud storage systems, a centralized architecture is widely
used, but many concerns have arisen with its efficacy. For
example, having a few physical data centers store all the
outsourced data results in data being stored further away from
most users, slowing down data access; also, having all re-
sources maintained in limited physical locations is vulnerable
to large outages and failures. Therefore, cloud providers today
have turned to a new decentralized architecture, in which
any entity can join the system as a peer, providing storage
service to earn rewards. Essentially, all the peers form “virtual”
data centers. Mainstream decentralized cloud storage providers
include Storj [3], Sia [1], Filecoin [6], etc.

To promote storage outsourcing, we should allow data
owners to ensure integrity of their outsourced data over time.
Towards this guarantee, an essential step is to detect any
data corruption securely and timely. In the centralized cloud,
this issue is not significant as data are stored in trustworthy
data centers physically possessed and protected by the cloud
provider. In the decentralized cloud however, this issue is
significant as data are stored in arbitrary machines hosted by
untrusted peers which may misbehave. An integrity auditing
scheme is therefore highly desired in the decentralized setting.
When designing the auditing scheme, we should avoid impos-
ing too much burden on the data owners to conform to the
notion of storage outsourcing [5].

An immediate solution is to maintain a blockchain, and to
implement a smart contract in the blockchain which can act as
a trusted entity to verify integrity of the data stored in untrusted
peers [3], [6]. This solution suffers from a few limitations:
First, it is inflexible. After a smart contract is committed to the

blockchain, it cannot be updated due to the immutability nature
of blockchain. Second, it is highly inefficient. A smart contract
is typically stored across all miners, and will be executed
on all of them upon integrity auditing, incurring a significant
overhead in storage, communication and computation.

This work thus investigates a new integrity auditing protocol
without relying on the blockchain. Our key idea is to leverage
trusted hardware components equipped with each local storage
peer to establish a root of trust, and to develop a self auditing
protocol which can be seamlessly integrated with those trusted
components. Two broadly available hardware-level trusted
components, the trusted execution environment and the flash
translation layer, have been explored to build our protocol.
Note that we only focus on the static archival data.

II. BACKGROUND

Trusted execution environment (TEE). Many processors
used in modern computers are equipped with TEE fea-
tures including Intel SGX, AMD SEV/SME/TSME, etc.
SGX is broadly available in Intel Xeon processors and
SEV/SME/TSME are broadly available in AMD Ryzen,
RyzenPro and EPYC processors. The TEE allows a critical
application to be run inside a secure memory area (e.g., an
SGX enclave), in which the critical data and execution can be
isolated (at the hardware level) from the untrusted world and
hence remain protected even if the OS is compromised.
Flash translation layer (FTL). The FTL is a firmware layer
built into main-stream solid state drives (SSD), which have
occupied more than half [2] of the external storage of modern
computers. The FTL is isolated from the OS by the storage
hardware, so that even if the OS is compromised, the FTL can
remain intact. Such a hardware-level isolation can ensure the
security of the computation performed in the FTL even if the
OS is compromised. The FTL will be responsible for handling
the NAND flash memory that is structured into flash blocks,
with each block being composed of flash pages.
Remote data integrity checking (RDIC). To allow a trusted
party to check the integrity of data stored in an untrusted
server, remote data integrity checking has been designed [4],
[7]. In an RDIC, an auditor can issue a challenge to the server;
the server then computes a proof based on the challenge and
the stored data, and the auditor can verify whether the data are
correctly stored by checking the proof. To facilitate integrity
checking, a tag is computed for each data block and, both tags
and data blocks are outsourced to the server.



III. THREAT MODEL

We consider a decentralized cloud storage system consisting
of storage peers. Each peer is a computer (e.g., a laptop, a
desktop, a server computer, etc) owned by an individual or
an organization who wants to join the storage network and to
provide services. The computer is equipped with processors
(with TEE enabled), RAM, as well as an SSD (with FTL
built inside) as external storage. The storage peer is untrusted.
Especially, the operating system (OS) of the peer may be
compromised by a remote hacker, or infected by a piece of
malware which is able to gain the root privilege. Both the
SGX and the FTL are assumed to be trusted.

IV. DESIGN

Our goal is to design a self-auditing protocol, which func-
tions in each storage peer and can detect if any data have been
corrupted locally. Simply adopting RDIC would not work,
as a trusted third party is not immediately available in the
setting of decentralized cloud. We therefore rely on the TEE
equipped within the storage peer to act as the trusted auditor.
The TEE can always ensure that the auditor program is running
in an isolated memory region even if the OS is compromised.
Periodically, the auditor will issue a challenge to the local
SSD. For efficiency, a random checking technique [4], [7] is
used, in which the auditor only challenges a random subset
of the stored data. The OS will return this random subset of
data, together with the corresponding tags, and the auditor will
check their integrity. Two additional research challenges need
to be addressed in our setting considering the OS is untrusted:

First, how can the auditor ensure that the data being
challenged are really from the local SSD? The storage peer
may outsource it’s data to some less expensive store, with no
security guarantee, for financial gain. This data may be far
away from the peer (slowing data access) and less reliable.
Thus, we must guarantee that the data are actually stored in
the SSD of the storage peer. Our observation is, the data stored
in the local SSD is ultimately managed by the FTL, which
remains trusted even if the OS is compromised. Therefore,
upon integrity checking, if the OS does not fetch the data from
the local SSD, the FTL will be aware of such a misbehavior
and inform the auditor “somehow”. The SSD access from the
OS eventually will result in the access of the flash memory
pages. Therefore, the FTL can embed some “secret” into the
page being accessed, and the auditor can extract this secret and
confirm that the data really comes from the FTL. Specifically,
the FTL can encrypt the data from each flash page which have
been read by the auditor in the TEE, using a symmetric key
shared between the TEE and the FTL. Upon receiving the data,
the TEE can decrypt the ciphertext using the same key. If the
ciphertext cannot be decrypted properly, the RDIC will fail as
the tags will not be corresponding to the challenged data. To
prevent the replay attack, the symmetric key should be changed
upon each integrity check. This can be addressed by sharing a
master key between the TEE and the FTL, and generating an
ephemeral key for each integrity checking via a key derivation
function (KDF) based on the master key. One optimization

towards reducing the encryption/decryption computation is to
only encrypt/decrypt a portion of data randomly selected from
each page, and the random location can be determined by the
ephemeral key. To share the master key securely between the
TEE and the FTL, a key sharing protocol (e.g. ECC based
Diffie-Hellman) can be used when the peer is initialized.

Second, how can the auditor ensure the challenged data
come from the desired block locations on the SSD? For
example, the auditor randomly picks a data block at block
address 2,000 and checks its integrity; however, the untrusted
OS controls the read system call, so may return the data
at block address 20,000 as the data at 2,000 have been
corrupted. Our observation is, different blocks at the OS level
will correspond to different logical flash addresses controlled
by the trusted FTL. Therefore, if we bind each data with
the corresponding logical flash page numbers, the adversary
will be unable to perform the aforementioned attack. Our
solution is, upon deriving the ephemeral key via the KDF and
the master key shared between TEE and FTL, we also use
the corresponding logical page number as input to the KDF
(typically, the logical flash page numbers can be computed
from a given block address).

V. PRELIMINARY IMPLEMENTATION AND EVALUATION

We have implemented a prototype of our design using the
open-source FTL firmware OpenNFM (ported [8] to an elec-
tronic development board LPC-H3131 with 180MHz ARM
micro-controller, 32 MB SDRAM, and 512MB SLC NAND
flash) and Intel SGX (equipped in Lenovo Yoga C940 with
Intel Core i7-1065G7 1.3 GHz and 12GB LPDDR4 3733
MHz RAM). Further, preliminary evaluations of our prototype
during three essential phases demonstrate the low overhead.
The setup phase implements a key sharing protocol between
SGX and FTL. During file preparation, the SGX creates tags
used for the auditing process. The auditing process, managed
by the SGX requests the necessary data from the untrusted
OS, and evaluates the integrity and source (from FTL). Our
preliminary results are summarized in Table I.

Key Sharing (one time) Prepare File (one time) Audit File
time in FTL (s) 7.73 .004 .1
time in SGX (s) 1.15 .006 .05

TABLE I
TIME FOR DIFFERENT PHASES WITH SMALL (10 BLOCKS) FILES

Acknowledgment. This work was supported by US Na-
tional Science Foundation under grant number 2225424-CNS,
1928349-CNS, and 2043022-DGE.

REFERENCES

[1] Sia. http://sia.tech/.
[2] Ssd market share. https://www.t4.ai/industry/ssd-market-share.
[3] Storj - decentralized cloud storage. https://storj.io/.
[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song. Provable data possession at untrusted stores. In CCS ’07.
[5] B. Chen and R. Curtmola. Towards self-repairing replication-based

storage systems using untrusted clouds. In Proc. of CODASPY ’13.
[6] Filecoin. Filecoin. https://filecoin.io/.
[7] H. Shacham and B. Waters. Compact proofs of retrievability. In Proc. of

Asiacrypt ’08.
[8] D. Tankasala, N. Chen, and B. Chen. A step-by-step guideline for creating

a testbed for flash memory research via lpc-h3131 and opennfm. 2020.

2


